JOURNAL OF APPROXIMATION THEORY 25, 201-203 (1979)

On Positive Functions in Haar Spaces

CHRIS CORAY AND E. R. HEAL

Department of Mathematics, Utah State University, Logan, Utah 84322 Communicated by Oved Shisha

Received March 11, 1977

Let X be a compact topological space and C(X) the space of real valued continuous functions on X. For $f \in C(X)$ define

$$||f|| = \sup\{|f(x)|: x \in X\}.$$

Let ϕ_1 , ϕ_2 ,..., ϕ_n be a linearly independent subset of C(X). The problem of one sided Chebyshev approximation, which has been of interest to Dunham [2] and others, is the following. Given an $f \in C(X)$, minimize

$$\left\|f-\sum_{i=1}^n a_i\phi_i\right\|$$

over all $\sum_{i=1}^{n} a_i \phi_i(x)$ subject to

$$\sum_{i=1}^n a_i \phi_i(x) - f(x) \ge 0 \qquad \forall x \in X.$$

In this paper we establish the existence of a positive function in a class of Haar spaces which is helpful in proofs of existence theorems. Let H_n denote a Haar subspace of C(X) of dimension *n*, with basis ϕ_1 , ϕ_2 ,..., ϕ_n .

In [2], Dunham presented a theorem on existence and uniqueness of a best one-sided approximation to a given $f \in C(X)$, where X is a compact normal space. An essential part of his proof involved the existence of a positive function, and he claimed that if $\phi_1, ..., \phi_n$ is a Chebyshev set then existence of a positive linear combination $\sum_{i=1}^{n} a_i \phi_i$ was assured. This, however, is not the case, as we see from the following example. Let $X = [-2, -1] \cup [1, 2]$ and let $\phi_1(x) = x$. Then $\phi_1(x)$ has no zeros in X but $\alpha \phi_1(x)$ is positive linear combination under certain conditions.

THEOREM 1. Let H_n be an n-dimensional Haar subspace of C(X), where X is a compact metric space with a distance function d. If X contains a point p

such that p is not an isolated point of X and $X \setminus \{p\}$ is arcwise connected, then there exists $g \in H_n$ such that g(x) > 0 for each $x \in X$.

Proof. We will first obtain an element g of H_n such that $g(x) \ge 0$ for each $x \in X$. For each $n = 1, 2, ..., let <math>U_n = \{x: d(x, p) < 1/n\}$ and let $y \in X \setminus U_1$. It may be that $X \setminus U_1 = \emptyset$, but for some $i, X/U_i \neq \emptyset$. Without loss of generality we assume i = 1. Since p is not an isolated point of X, we may choose n - 1 distinct points $x_1^k, ..., x_{n-1}^k$ of U_k . Since H_n is a Haar space, there exists $g_k \in H_n$ such that

$$g_k(y) > 0,$$

 $||g_k|| = 1,$

and

$$g_k(x_i^k) = 0, \quad i = 1, \dots, n-1$$
 [3, p. 20].

In the case n = 1, there are no such x_i 's.

Consider a second norm on H_n :

$$\|\alpha_1\phi_1+\cdots+\alpha_n\phi_n\|_m=\max |\alpha_i|.$$

Using the result that any two norms on a finite dimensional space are equivalent, we obtain that if

$$g_k(x) = \alpha_{k1} + \cdots + \alpha_{kn} \phi_n$$
,

then since

 $\|g_k\|=1 \quad \forall k,$

we have

$$\|g_k\|_m \leqslant B, \quad \forall k,$$

B being a constant. This implies that the coefficients

$$\alpha_{ki}$$
, $k = 1, 2, ..., i = 1, ..., n$,

are uniformly bounded. We may, therefore, choose a subsequence of $\{\alpha_{k1}\}\$ which converges to same α_1 . We then select a subsequence of the subsequence above so that the corresponding subsequence of α_{k2} converges to some α_2 . Continuing in this way we produce a convergent subsequence of g_k , hereafter called g_k , which converges to some g in || ||. We observe that since

$$g_k(y) > 0 \quad \forall k$$

and

$$g(y) = \lim_{k} g_k(y)$$

it follows that

 $g(y) \ge 0.$

We also observe that since

$$\left| \left\| g \right\| - \left\| g_k \right\| \right| \leq \left\| g - g_k \right\|,$$

it must be the case that

$$||g|| = 1.$$

Let $y' \in X - \{p, y\}$. There exists an arc A from y to y' missing p. There exists an M > 0 such that $U_k \cap A = \emptyset$ for k > M. Now $g_k(y) > 0$ and g_k has no zeros in $X \setminus U_k$. Hence $g_k(x) > 0$ for each $x \in A$ k > M. It follows that $g(y') \ge 0$. Since y' was an arbitrary point in X distinct from p, $g(x) \ge 0$ for each $x \in X$, $x \ne p$. But p is not isolated; hence, by continuity, $g(x) \ge 0$ $\forall x \in X$.

If H_n does not contain a positive function, then for each η , $0 < \eta < 1$, ηg is a best approximation from H_n to the function f(x) = 1. This contradicts the Haar uniqueness theorem [3, pp. 22]. Thus H_n contains a positive function. We remark that if X = [a, b], then we can choose p to be a or b. In our example earlier, no point p exists such that $X \setminus \{p\}$ is arcwise connected.

References

- 1. P. J. DAVIS, "Interpolation and Approximation," Ginn/Blaisdell, Waltham, Mass., 1963.
- C. B. DUNHAM, Uniqueness in one-sided linear Chebyshev approximation, J. Approximation Theory 15 (1975), 275-277.
- 3. H. S. SHAPIRO, "Topics in Approximation Theory," Springer-Verlag, New York/ Berlin, 1971.