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Let X be a compact topological space and C(X) the space of real valued
continuous functions on X. For fe C(X) define

£l = sup{l f(x)]: x € X}.
Let ¢, &5 ..., $, be a linearly independent subset of C(X). The problem

of one sided Chebyshev approximation, which has been of interest to
Dunham [2] and others, is the following. Given an fe C(X), minimize

Hf— g:l a;$;

over all 3}, a;$(x) subject to

n

Y aidi(x) — f(x) =0 VxeX.
i=1

In this paper we establish the existence of a positive function in a class of
Haar spaces which is helpful in proofs of existence theorems. Let A, denote
a Haar subspace of C(X) of dimension #, with basis ¢, , ¢5 ..., b, .

In [2], Dunham presented a theorem on existence and uniqueness of a
best one-sided approximation to a given fe C(X), where X is a compact
normal space. An essential part of his proof involved the existence of a
positive function, and he claimed that if ¢, ,..., ¢, is a Chebyshev set then
existence of a positive linear combination ;. , a;¢; was assured. This,
however, is not the case, as we see from the following example. Let
X =[—2, —1] U1, 2] and let ¢,(x) = x. Then ¢,(x) has no zeros in X but
a¢y(x) is positive for no «. We now present a theorem establishing the
existence of a positive linear combination under certain conditions.

Taeorem 1. Ler H, be an n-dimensional Haar subspace of C(X), where X
is a compact metric space with a distance function d. If X contains a point p
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such that p is not an isolated point of X and X\{ p} is arcwise connected, then
there exists g € H, such that g(x) > 0 for each x € X.

Proof. We will first obtain an element g of H, such that g(x) > 0 for
each xe X. For each n = 1,2,., let U, = {x:d(x,p) < 1/n} and let
ye X\U, . It may be that X\U; = @, but for some i, X/U; % @. Without
loss of generality we assume / = 1. Since p is not an isolated point of X,
we may choose n — 1 distinct points x,%,..., x¥_; of Uy . Since H, is a Haar
space, there exists g, € H, such that

g(y) > 0,
gl =1,
and
gi(x® =0, i=1-,n—1 [3p.20]

In the case n = 1, there are no such x;’s.
Consider a second norm on H,, :

gy + = + apPnlln = mflx [ ol

Using the result that any two norms on a finite dimensional space are
equivalent, we obtain that if

gulx) = ogg + A+ ApnPn s

then since
flgell =1  Vk,
we have
lgxllm < B,  Vk,
B being a constant. This implies that the coefficients
Xei o k = 1, 2,..., i= 1,..., n,

are uniformly bounded. We may, therefore, choose a subsequence of {o;,}
which converges to same «, . We then select a subsequence of the subsequence
above so that the corresponding subsequence of oy, converges to some «, -
Continuing in this way we produce a convergent subsequence of g, , here-

after called g, , which converges to some g in || ||. We observe that since

gdy) >0 Vi
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and
g(y) = lim gi(y),

it follows that
g(y) = 0.

We also observe that since

lgh—1lgll| <llg—gwls

it must be the case that

gl = 1.

Let y’' € X — { p, y}. There exists an arc 4 from y to y’ missing p. There exists
an M > O such that U, n 4 = & for k > M. Now gi(y) > 0 and g; has
no zeros in X\U, . Hence gi(x) > 0 for each xe 4 k > M. It follows that
g(y) = 0. Since y’ was an arbitrary point in X distinct from p, g(x) = 0
for each x € X, x # p. But p is not isolated; hence, by continuity, g(x) > 0
Vxe X.

If H, does not contain a positive function, then for each », 0 <7 < 1,
7g is a best approximation from H,, to the function f(x) = 1. This contradicts
the Haar uniqueness theorem [3, pp. 22]. Thus H, contains a positive
function. We remark that if X = [a, 5], then we can choose p to be a or b.
In our example earlier, no point p exists such that X\{ p} is arcwise connected.
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